
Mixtures

The crux of solving this problem is to think about it from a geometric perspec-
tive and discover a couple of properties, afterwards it’s a matter of implementing
efficient ways / data structures to process the queries accordingly.

There are a couple of possible approaches, but it seems easiest to translate it to
a 2D geometry problem. We first translate all mixtures - the target mixture and
the bottles - to 2D points in the following way: given a mixture with proportions
(S, P,G) we transform it to a point (x, y) = (S/(S + P + G), P/(S + P + G)).
Intuitively x and y are the relative amounts of salt and pepper, respectively, in
the mixture. Now scaling the proportion values (i.e., multiplying S, P , G with
the same coefficient, which describes an identical mixture) keeps (x, y) constant.
Mixing two or more bottles ends up combining these 2D points (or vectors) with
positive weights the sum of which is 1.

Having that, we consider these lemmas (proofs are left as an exercise):

Lemma 1. If a bottle point matches the target point, the target mixture
can be obtained using only that one bottle.
Lemma 2. If the line segment defined by two different bottle points contains
the target point, the target mixture can be obtained using those two bottles.
Lemma 3. If the triangle defined by three different bottle points contains the
target point, the target mixture can be obtained using those three bottles.
Lemma 4. If the target point is not contained by any triangle defined by three
different bottles, the target mixture cannot be obtained.

Based on these properties we can define the following general algorithm:

1. Maintain the set of points.
2. At each step, check the state to find the answer:

2a. If there is a point matching the target point ⇒ 1.
2b. Otherwise, if there is a pair of points whose line segment contains the

target point ⇒ 2.
2c. Otherwise, if there is a triplet of points whose triangle contains the

target point ⇒ 3.
2d. Otherwise ⇒ 0.

Subtask 1 (N ≤ 50)

At each step we can simply check each point / pair of points / triplet of points
to see if we have case (2a), (2b), or (2c). This takes O(N) / O(N2) / O(N3)
time for each query, so the total time complexity to process all queries is O(N4).

Total Complexity: O(N4)
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Subtask 2 (N ≤ 500)

Full search on all points / pairs of points is still feasible here. We need to
speed-up the case (2c): checking the triangles. Here the key observation is that
instead of considering all triangles individually we can check whether the target
point is inside the convex hull defined all bottle points; namely, if the target
point is inside the convex hull there exists at least one triplet of bottle points the
triangle of which contains the target point, and if it is outside the hull no such
triplet exists. It’s possible to build the convex hull and check if the target point
is inside it in time O(N logN), but for this subtask a sub-optimal approach up
to O(N2) is also good enough.

Total Complexity: O(N3)

Subtask 3 (N ≤ 5000)

Full search on all single points still feasible. To check triplets we do the same
convex hull approach as in the previous subtask, but we have to use the optimal
O(N logN) method this time. For pairs of points we need something better. If
we fix a point as one end of the line segment, to have the target point on the
segment we know that the other point has to be exactly opposite from the first
point relative to the target point (direction-wise, the distance doesn’t matter).
In other words, after fixing the first point we know exactly at what angle the
second point should be (with respect to the target point). So if we have a data
structure that we can store points in and test for existence by angle (e.g., using
tangent value), we can load all current points in it and then go through each bot-
tle point and quickly check whether an opposite point currently exists. If there
is never an opposite point, it means we don’t have any line segment contain-
ing the target point, and vice versa. It can be done in O(N logN) for each query.

Total Complexity: O(N2 logN)

Subtask 4 (N ≤ 105)

For the previous subtasks we were answering each query completely indepen-
dently. For the full solution we aim for a O(logN) time for each query so we
need to find a way to maintain the state of points through time so that we can
update the state (add / remove bottles) and check the current answer quickly
for each query. Let’s look at all cases (single point, pair, triplet) separately:

a. For single point checks we can keep the points in a structure that let’s
us add/remove/find in O(logN) time. We can also just maintain a counter for
matching bottles that we increase/decrease whenever we add/remove a point
that matches the target point - then at any step the answer is 1 if the counter
is greater than zero.
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b. For solving the line segment case we go back to the previous idea. If
we have all bottle points stored in an appropriate data structure, we need
O(N logN) time per query to check whether there exist opposite points (N
points, O(logN) check if an opposite point exists), which is too slow. However,
we can maintain a counter for the total number of pairs of points that are oppo-
site to each other (with respect to the target point) within the set of all current
points, and update it after each query. Then, similarly to the single point case,
the answer is 2 if this counter is greater than zero. To achieve this we need to
maintain a data structure that stores all angles of points (e.g., tangent value)
and checks for (and allows to update) the number of elements with a certain
value currently stored. This can be done in O(logN) time for each operation.

c. For the triplet case we can use the same convex hull idea, but we need a
dynamic version that we can update query-to-query (add/remove points) and
test whether the target point is inside it. This can be done with an amortized
time of O(logN) per query. However, we don’t really need to construct the
exact convex hull itself, we just need a way to tell whether the (single fixed)
target point is inside of it. If we order all points around the target point by an-
gle, then it’s enough to check whether all angles between consecutive points are
less than 180 degrees. If that’s not the case (i.e., some two consecutive points
are more than 180 degrees apart) then the target point is outside the hull (and
the answer is 0), otherwise inside (answer 3). We need to maintain the points
ordered in such a way by adding/removing points for each query, and be able
to check for angles bigger than 180 degrees. There are various ways how to do
this technically, and it can be done in O(logN) time per query.

Total Complexity: O(N logN).

Final notes

1. In the end for the final solution all cases can be handled using the same
data structure that stores the points/angles, so the solution becomes rel-
atively concise.

2. This problem requires divisions. You can simply use floating point num-
bers, but there is a risk of making the wrong discrete decisions due to
floating point imprecision. The correct way here is to work with rational
number, i.e., store and operate with values as numerators and denomina-
tors (p/q). However, you still have to be careful to not cause overflows.
Note that subtasks have varying constraints on the proportion values,
which allows more freedom in operations without causing overflows. The
full problem has a constraint of 106, and it is possible to implement a
solution that only multiplies these values once so we use 2nd order values.
(3rd order is also tolerated, but more typical careless approaches that yield
4th or 8th degree values are penalized in later subtasks).
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