
Colors

Subtask 1 (N ≤ 64)

We will use the colors in this order: 1, N , 2, N − 1, 3, N − 2, . . .; this way we
will check each difference N − 1, N − 2, N − 3, N − 4, . . . and the answer is the
first difference that is not recognized by Archie.

Complexity: N queries.

Subtask 2 (N ≤ 125)

We can first ask the colors N/2 and 1. If Archie recognizes the difference, then
C ≤ N/2, and as in the Subtask 1, we can ask the queries N/2−1, 2, N/2−2, 3,
N/2− 3, 4, . . ., until we find the first difference that Archie does not recognize.
Otherwise we ask the queries N , 2, N − 1, 3, N − 2, . . . until we find the first
difference that Archie recognizes.

Complexity: N/2 + 1 queries.

Subtask 3 (N ≤ 1000)

First use
√
N values and try to understand k value for which it is true that C is

between k
√

(n) and (k + 1)
√

(n). For example, if N = 100, then use values 5,
15, 25, . . ., 95 and use the Subtask 1 N -query algorithm to find the value of k.
And then again use the Subtask 1 N -query algorithm to calculate the precise
C value.

Complexity: 2
√
N queries.

Subtask 4 (N ≤ 109)

Let assume that we have a correct strategy for all values of N that do not exceed
k.

If k is even (k = 2j) we will use the strategy that was used for j numbers
and use only even (or odd) numbers. This way each jump in j becomes twice
as long and in the result (when the strategy for j has finished) we will know
that the answer is 1 or 2, 3 or 4, 5 or 6, and so on. We then know for some x
that Archie recognizes the difference 2x and we need to understand whether he
recognizes the difference 2x − 1. It can be proved that if possible answers are
2x− 1 and 2x, then the last difference that was checked was either 2x or 2x− 2
and in both cases we will be able to make a jump in the opposite direction with
length 2x− 1.

If k is odd (k = 2j + 1) we use the strategy for j colors and use the numbers
2, 4, 6, 8, 10, and so on. When the strategy for j is finished, we know that the
answer is 1 or 2, 3 or 4, 5 or 6, . . ., 2j−1 or 2j or 2j+1. And then in almost all

1



cases we can calculate the answer with one additional query, but if the possible
answer is one of 2j− 1, 2j or 2j + 1 then we need to use two additional queries.

Complexity: 2 log2 N queries.

For example, for the base cases N = 3 and N = 4 we can use the following
algorithms:

Then using our construction, we get the following algorithm for N = 8:

Subtask 5 (N ≤ 1018)

Let’s assume that we have a correct strategy for all values of N that do not
exceed k. We will restrict our strategy even more – consecutive jumps need to
be made in the opposite directions.

Suppose that k is even (k = 2j) and the first color used in the j strategy is
f . Then we make the first jump from f to f + j (or from f + j to f). With this

2



jump we will understand whether C is bigger than j (if the answer is negative)
or smaller or equal than j (if the answer is positive). If the answer is smaller or
equal to j then we use strategy for j on numbers from 1 to j (we already have
the color f). If the answer is bigger than j, then we extend all jumps in the
j strategy by j (if we had a jump with length p, then now we will make jump
with length p+ j). As we are always jumping back and forth then we will never
jump out of range from 1 to n and will return the answer in the range j + 1 to
2j.

If k is odd, we can use a similar strategy.

Complexity: log2 N + 1 queries.

In this case, we get the following algorithm for N = 8:

3


